Representation of certain homogeneous Hilbertian operator spaces and applications

نویسندگان

  • Marius Junge
  • Quanhua Xu
چکیده

Following Grothendieck’s characterization of Hilbert spaces we consider operator spaces F such that both F and F ∗ completely embed into the dual of a C*-algebra. Due to Haagerup/Musat’s improved version of Pisier/Shlyakhtenko’s Grothendieck inequality for operator spaces, these spaces are quotients of subspaces of the direct sum C ⊕ R of the column and row spaces (the corresponding class being denoted by QS(C⊕R)). We first prove a representation theorem for homogeneous F ∈ QS(C ⊕R) starting from the fundamental sequences

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type and Cotype of Operator Spaces

We consider two operator space versions of type and cotype, namely Sp-type, Sq-cotype and type (p, H), cotype (q, H) for a homogeneous Hilbertian operator space H and 1 ≤ p ≤ 2 ≤ q ≤ ∞, generalizing “OH-cotype 2” of G. Pisier. We compute type and cotype of some Hilbertian operator spaces and Lp spaces, and we investigate the relationship between a homogeneous Hilbertian space H and operator spa...

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

Classification of Contractively Complemented Hilbertian Operator Spaces

We construct some separable infinite dimensional homogeneous Hilbertian operator spaces H ∞ and H m,L ∞ , which generalize the row and column spaces R and C (the case m = 0). We show that separable infinitedimensional Hilbertian JC∗-triples are completely isometric to an element of the set of (infinite) intersections of these spaces . This set includes the operator spaces R, C, R ∩ C, and the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009